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Text	S1.	Measuring	the	chemical	correlation	with	virtual	screening.	

The	chemical	correlation	was	developed	 to	 indirectly	measure	 the	similarity	between	binding	

sites	with	virtual	screening.	1,2	It	can	be	calculated	for	compound	ranks	assigned	by	either	ligand-	

or	structure-based	virtual	screening.	 In	 the	present	study,	structure-based	virtual	screening	 is	

conducted	with	AutoDock	Vina	3	for	target	pocket	in	the	Huang	dataset	4	against	a	non-redundant	

library	 of	 1,515	 FDA-approved	 drugs	 obtained	 from	 the	DrugBank	 database.	 5	 Docking	 poses	

generated	by	Vina	are	 ranked	according	 to	 the	predicted	binding	energy.	 Subsequently,	non-

parametric	Spearman’s	r	correlation	coefficient	6	is	computed	for	compound	ranks	assigned	to	a	

pair	of	pockets.	Spearman's	r	measures	the	degree	of	monotonic	relationship	ranging	from	+1	to	

-1,	where	+1	is	a	perfect	correlation,	0	is	the	lack	of	any	correlation,	and	-1	is	an	anti-correlation.	

A	high	Spearman's	r	indicates	that	a	pair	of	pockets	not	only	exhibit	high	binding	affinity	toward	

similar	compounds	but	also	do	not	bind	similar	ligands.		

	

Text	S2.	Addressing	the	early	recognition	problem	with	BEDROC.	

The	Boltzmann-enhanced	discrimination	of	the	receiver	operating	characteristic	(BEDROC)	7	is	a	

generalization	of	the	area	under	the	ROC	curve	(AUC)	addressing	the	early	recognition	problem.	

While	 the	 AUC	 metric	 is	 useful	 to	 assess	 the	 performance	 of	 a	 binary	 classifier,	 it	 fails	 to	

discriminate	curves	with	the	same	AUCs	but	differing	degrees	of	the	early	recall.	For	two	ROC	

curves	varying	in	shape,	many	applications	prefer	the	curve	with	a	higher	proportion	of	its	AUC	

at	a	low	false	positive	rate.	Classifiers	requiring	early	recognition	capabilities	include,	for	instance,	

virtual	screening	and	the	detection	of	off-targets,	where	a	large	number	of	initial	molecules	must	

be	reduced	to	a	testable	number	of	promising	candidates.	Similar	to	AUC,	BEDROC	ranges	from	

0	to	1	and	can	be	interpreted	as	the	probability	of	a	ranked	positive	to	be	positioned	higher	in	

the	ordered	list	than	by	a	random	chance.	However,	 in	contrast	to	the	uniform	distribution	in	

AUC,	BEDROC	 is	based	on	 the	exponential	distribution	with	 the	adjustable	exponential	 factor	

defining	the	desired	degree	of	“early	recognition".	In	our	study,	we	use	the	recommended	value	

of	20,	which	means	that	80%	of	the	maximum	contribution	to	the	BEDROC	score	comes	from	the	

first	8%	of	the	ranked	list.	
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Text	S3.	Evaluating	the	structure	quality	with	RMSD,	TM-score,	and	GDT-score.	

The	 root-mean-square	 deviation	 (RMSD)	measures	 the	 similarity	 between	 superposed	 three-

dimensional	protein	structures	based	on	Cartesian	distances.	8	It	can	be	calculated	for	Ca	atoms	

or	 all	 atoms	 over	 the	 entire	 length	 of	 a	 protein,	 as	 well	 as	 for	 specific	 regions,	 such	 as	

transmembrane	helices,	loops,	binding	pockets,	etc.	The	unit	of	the	RMSD	is	Angstrom	[Å]	and	

high	values	correspond	to	low	similarities	between	two	structures.	Nonetheless,	the	global	RMSD	

was	 shown	 to	 be	 the	 least	 representative	 of	 the	 degree	 of	 structural	 similarity	 because	 it	 is	

dominated	by	the	largest	error,	9	for	instance,	different	conformation	of	a	single	loop	can	inflate	

the	RMSD	between	two	otherwise	identical	proteins.	Furthermore,	the	RMSD	is	strongly	length-

dependent	complicating	the	comparison	of	proteins	of	different	length.	

	 A	number	of	other	measures	have	been	developed	to	provide	a	statistically	meaningful	

assessment	 of	 similarity	 between	 biomolecules.	 An	 example	 is	 the	 Template	Modeling	 (TM)-

score	quantifying	the	topological	similarity	between	a	pair	of	protein	structures	based	on	the	

coordinates	of	Ca	atoms.	10	TM-score	ranges	from	0	to	1	with	higher	values	indicating	a	higher	

similarity	 between	 protein	 structures,	 and	 the	 value	 of	 1	 is	 a	 perfect	 match	 between	 two	

structures.	 Scores	 below	 0.17	 correspond	 to	 randomly	 chosen	 unrelated	 protein	 structures,	

whereas	scores	above	0.5	indicate	that	two	protein	structures	have	the	same	fold	11	according	to	

the	Structural	Classification	of	Proteins	(SCOP)	12	and	the	CATH	Protein	Structure	Classification	

database.	13	Another	metric	is	the	Global	Distance	Test	(GDT)-score	reporting	the	number	of	Ca	

atom	pairs	within	distance	thresholds	of	1,	2,	4,	and	8	Å	after	the	superimposition	of	the	query	

and	 reference	 structures.	 14	 However,	 these	 distance	 cutoffs	 are	 subjective	 and	may	 require	

target-specific	adjustments.	 15	Further,	 the	magnitude	of	 the	GDT-score	 for	 random	structure	

pairs	has	a	similar	to	the	RMSD	power-law	dependence	with	the	protein	 length.	 10	GDT-score	

ranges	from	0	to	1	with	higher	values	indicating	a	higher	similarity	between	protein	structures.	

	

Text	S4.	Ligand-binding	site	alignment	with	eMatchSite.	

eMatchSite	 is	a	sequence-order	 independent	algorithm	to	compare	 ligand-binding	sites.	 1,16	 It	

assigns	 a	 set	 of	 residue-level	 scores	 extracted	 from	 weakly	 homologous	 template	 proteins	
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complexed	with	small	molecules	covering	various	properties	of	binding	ligands	and	residues.	In	

addition,	the	evolutionary	information	is	included	as	sequence	and	secondary	structure	profiles,	

and	 entropy.	 An	 important	 feature	 of	 eMatchSite	 is	 its	 capability	 to	 predict	 pairwise	 Ca-Ca	

distances	 between	 binding	 residues	 upon	 the	 optimal	 alignment	 of	 two	 pockets	 by	machine	

learning.	Based	on	these	distances,	it	constructs	local	alignments	of	pocket	residues	by	solving	

the	 assignment	 problem	 with	 the	 Kuhn-Munkres	 algorithm.	 17,18	 Binding	 site	 alignments	 are	

subsequently	assigned	a	similarity	score,	called	the	eMS-score,	which	measures	the	overlap	of	

various	 physicochemical	 and	 evolutionary	 features.	 eMS-score	 ranges	 from	 0	 for	 completely	

dissimilar	 pockets	 to	 1	 for	 identical	 pockets,	 with	 an	 optimized	 threshold	 of	 0.56	 accurately	

distinguishing	between	pockets	binding	similar	and	dissimilar	molecules.	

	

Text	S5.	DFIRE	statistical	energy	function	for	biomolecular	complexes.	

The	goal	of	the	modeling	of	ligand-protein	interactions	is	to	identify	biologically	relevant,	near-

native	complexes.	An	important	component	of	the	modeling	procedure	is	the	prediction	of	the	

energy	of	association	between	small	molecules	and	their	macromolecular	targets.	This	task	can	

be	accomplished	by	physics-based,	knowledge-based,	or	empirical	scoring	functions.	Distance-

scaled	 Finite	 Ideal-gas	REference	 (DFIRE)	 is	 a	 knowledge-based	 statistical	 potential	 to	 predict	

binding	 affinities	 for	 ligand-protein,	 protein-protein,	 and	 DNA-protein	 complexes.	 Binding	

affinities	estimated	by	DFIRE	are	highly	correlated	with	those	experimentally	determined	with	a	

Pearson	correlation	coefficient	R	of	0.63,	outperforming	12	other	scoring	functions.	This	energy	

function	also	offers	highly	accurate	predictions	of	binding	affinities	for	protein-protein	(R	=	0.73)	

and	DNA-protein	(R	=	0.83)	complexes.	Because	of	the	high	accuracy	of	DFIRE,	we	employ	this	

scoring	function	to	evaluate	binding	energies	of	drugs	repositioned	to	off-target	proteins	with	

eMatchSite.	

	

Text	S6.	Ligand-binding	site	prediction	with	eFindSite.	

eFindSite	is	a	structure/evolution-based	ligand-binding	site	prediction	approach	employing	meta	

threading	to	identify	a	set	of	evolutionarily	related	templates	complexed	with	ligands.	19,20	These	

templates	 are	 first	 structurally	 aligned	 onto	 the	 target	 with	 Fr-TM-align	 21	 followed	 by	 the	
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clustering	of	the	centers	of	mass	of	bound	ligands	to	identify	putative	binding	sites	in	the	target	

structure.	eFindSite	offers	a	machine	learning-based	confidence	estimation	system	not	only	to	

rank	the	predicted	sites,	but	also	to	reliably	evaluate	the	corresponding	ranking	confidence.	This	

algorithm	 uses	 a	 vector	 of	 various	 features,	 including	 the	 fraction	 of	 templates	 that	 share	 a	

particular	 site,	 the	 cluster	multiplicity,	 the	 average	 TM-score	 of	 templates	 to	 the	 target,	 the	

number	and	the	average	confidence	of	predicted	binding	residues,	and	a	protein-ligand	binding	

index	 calculated	 over	 predicted	 binding	 residues.	 The	 assigned	 confidence	 estimates	 the	

likelihood	that	the	site	center	is	predicted	within	a	distance	of	8	Å	from	the	geometrical	center	

of	a	natively	bound	ligand.	

	

Text	S7.	Chemical	alignment	with	KCOMBU	and	the	Tanimoto	coefficient.	

Comparing	 the	 chemical	 structures	 of	 organic	 molecules	 has	 a	 number	 of	 applications	 in	

cheminformatics.	 Techniques	employing	 the	graph	 theory	 find	equivalent	 atom	and	bonds	 in	

molecules	 by	 solving	 the	 maximum	 common	 substructure	 (MCS)	 and/or	 maximum	 clique	

problems.	An	example	of	such	algorithm	is	the	K(ch)emical	structure	COMparison	using	the	BUild-

up	algorithm	(KCOMBU).	22	This	method	is	capable	of	finding	connected	and	disconnected	MCSs	

in	 molecules	 represented	 by	 graphs.	 In	 addition	 to	 the	 chemical	 alignment	 between	 two	

molecules,	KCOMBU	reports	their	similarity	in	terms	of	the	Tanimoto	coefficient	(TC).	23	Widely	

used	 TC	 is	 arguably	 the	 most	 reliable	 similarity	 measure	 for	 low-molecular	 weight	 organic	

molecules	24.	Briefly,	the	TC	compares	the	extent	of	commonality	or	similarity	between	two	sets	

by	defining	the	ratio	of	common	elements	to	the	non-common	elements.	TC	ranges	from	0	for	a	

pair	of	completely	dissimilar	compounds	to	1	indicating	identical	molecules.	For	molecule	pairs	

with	 the	TC	greater	 than	0.4,	KCOMBU	was	demonstrated	 to	correctly	match	 the	majority	of	

atoms	when	compared	to	their	exact	3D	superpositions.	Therefore,	a	minimum	TC	value	of	0.4	

in	KCOMBU	should	be	employed	keeping	in	mind	that	the	atom	matching	accuracy	significantly	

improves	for	chemical	alignments	assigned	higher	TC	values.	
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Figure	S1.	Interaction	diagrams	generated	by	PoseView	25	for	multiple	models	of	a	drug-target	

complex	 constructed	 based	 on	multiple	 pocket	 alignments.	 Ponatinib	 is	 repositioned	 to	 Ras-

related	 protein	 Rab-23	 based	 on	 its	 local	 alignment	 with	 (A)	 Lck/Yes-related	 novel	 protein	

tyrosine	 kinase,	 (B)	 lymphocyte	 cell-specific	 protein-tyrosine	 kinase,	 and	 (C)	 proto-oncogene	

tyrosine-protein	 kinase	 Src.	 Hydrogen	 bonds	 are	 depicted	 by	 black	 dashed	 lines,	 aromatic	

interactions	are	indicated	by	green	dashed	lines	connecting	green	solid	dots	at	the	aromatic	ring	

centers,	and	hydrophobic	interactions	are	illustrated	as	smooth,	green	contour	lines.	
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Figure	S2.	Histogram	of	the	number	of	structure	models	generated	for	a	subset	of	4,878	drug-

Orphanet	 complexes.	Multiple	 structure	models	 of	 the	 same	 complex	 are	 constructed	 using	

pocket	 alignments	 between	 the	 Orphanet	 target	 and	 different	 DrugBank	 proteins.	 Inset:	

Histogram	of	 RMSD	 values	 calculated	 for	 different	models	 of	 the	 same	 drug-target	 complex.	

RMSD	is	the	root-mean-square	deviation	computed	over	ligand	heavy	atoms.	

	

	
	

	 	



	 8	

Table	S1.	The	Huang	dataset	of	bound	and	unbound	proteins.	

Ligand	 Structure	 PDB-ID	 Chain	 Protein	
Adenosine	
(ADN)	

	

Bound	 1fmo	 E	 cAMP-dependent	protein	kinase	
1pg2	 A	 Methionyl-tRNA	synthetase	(MetRS)	
1vhw	 A	 Dimethyladenosine	transferase	

2eva	 A	
Transforming	growth	factor	
b-activated	kinase	1	(TAK1)	kinase	
adaptor	

2fqy	 A	 Membrane	lipoprotein	tmpc	
2pgf	 A	 Adenosine	deaminase	
3ce6	 A	 Adenosylhomocysteinase	
3fuu	 A	 Dimethyladenosine	transferase	

Unbound	 3fut	 A	 Dimethyladenosine	transferase	
Biotin	
(BTN)	

	

Bound	 1bdo	 A	 Acetyl-CoA	carboxylase	
1hxd	 A	 Bira	bifunctional	protein	
1stp	 A	 Streptavidin	complex	with	biotin	
2b8g	 A	 Biotin/lipoyl	attachment	protein	
2f01	 A	 Streptavidin	
2jgs	 A	 Circular	permutant	of	avidin	
3ew2	 A	 Rhizavidin	

Unbound	 1swb	 A	 Streptavidin	
	

Fructose-6-	
phosphate	

(F6P)	

	

Bound	 3fut	 A	 Central	glycolytic	gene	regulator	
3bxh	 A	 Mannose-6-phosphate	isomerase	

3h1y	 A	 N-acetylglucosamine-6-phosphate	
deacetylase	

3iv8	 A	 Glucose-6-phosphate	isomerase	

2cxs	 A	 Phosphoenzyme	intermediate	of	fru-
2,6-bisphosphatase	

1tip	 A	 Fructose-1,6-bisphosphatase	

1nuy	 A	 Fructose	1,6-bisphosphatase/inositol	
monophosphatase	

1lby	 A	 Central	glycolytic	gene	regulator	
Unbound	 2fbp	 A	 Fructose	1,6-bisphosphatase	
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Fucose	
(FUC)	

	

Bound	 1k12	 A	 Lectin	
1uzv	 A	 Pseudomonas	aeruginosa	lectin	ii	
2j1t	 A	 Fucolectin-related	protein	
3cqo	 A	 Fbp32	

3kmb	 1	 Phosphoenzyme	intermediate	of	fru-
2,6-bisphosphatase	

Unbound	 1kmb	 1	 Mannose-binding	protein-a	
	

Galactose	
(GAL)	

	
	
	
	

Bound	 1axz	 A	 Lectin	
1gca	 A	 Glucose/galactose-binding	protein	
1jz7	 A	 β-galactosidase	
1kwk	 A	 β-galactosidase	
1muq	 A	 Galactose-specific	lectin	
1oko	 1	 Pa-I	galactophilic	lectin	
1r47	 J	 α-galactosidase	A	
1rdk	 A	 Mannose-binding	protein-c	
1rvt	 A	 Hemagglutinin	
1tlg	 A	 β-galactosidase	
1xc6	 A	 Glucose-binding	protein	
2b3f	 A	 Polyandrocarpa	lectin	
2e9m	 A	 Cytosolic	β-glucosidase	
2gal	 A	 Galectin-7	
2j1a	 A	 Hyaluronidase	
2j5z	 A	 Ficolin-3	

2rjo	 A	 Twin-arginine	translocation	pathway	
signal	protein	

2v72	 B	 Exo-α-sialidase	
2vjj	 B	 Tailspike	protein	
2vno	 A	 Cpe0329	
2zgn	 A	 Anti-tumor	lectin	
3a23	 A	 Putative	secreted	α-galactosidase	
3c69	 A	 Uncharacterized	protein	ygjk	
5abp	 A	 L-arabinose-binding	protein	

Unbound	 1gcg	 A	 Galactose/glucose-binding	protein	
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Guanine	
(GUN)	

	

Bound	 1a95	 C	 Xanthine-guanine	
phosphoribosyltransferase	

1d6a	 A	 Pokeweed	antiviral	protein	

1it7	 A	 Archaeosine	trna-guanine	
transglycosylase	

1wet	 A	 Protein	(purine	repressor)	

1xe7	 A	 Hypothetical	22.5	kda	protein	in	tub1-
cpr3	intergenic	region	

2i9u	 A	 Cytosine/guanine	deaminase	related	
protein	

2o74	 A	 Ohcu	decarboxylase	
2ood	 A	 Blr3880	protein	
2puc	 A	 Protein	(purine	repressor)	
2puf	 A	 Protein	(purine	repressor)	

3bp1	 B	 NADPH-dependent	7-cyano-7-
deazaguanine	reductase	

Unbound	 1ula	 A	 Purine	nucleoside	phosphorylase	
Mannose	
(MAN)	

	

Bound	 1g12	 A	 Peptidyl-lys	metalloendopeptidase	
1js8	 A	 Hemocyanin	
1kza	 1	 Mannose-binding	protein	c	
1qmo	 A	 Mannose	binding	lectin,	fril	
1rin	 A	 Pea	lectin	
1xxr	 B	 Mannose-binding	lectin	

2duq	 A	 Vesicular	integral-membrane	protein	
vip36	

Unbound	 2duo	 A	 Vesicular	integral-membrane	protein	
vip36	

O1-methyl	mannose	
(MMA)	

	

Bound	 1kiu	 B	 Chaperone	protein	fimc	
1kwu	 A	 Mannose-binding	protein	a	
1lob	 A	 Legume	isolectin	i	(α	chain)	
1msa	 A	 Agglutinin	
1mvq	 A	 Lectin,	isoform	1	
1rdl	 1	 Mannose-binding	protein-c	
2bv4	 A	 Lectin	cv-iil	

3g81	 A	 Pulmonary	surfactant-associated	
protein	d	

Unbound	 2ctv	 A	 Concanavalin	A	
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2-Phenylimidazol	
(PIM)	

	

Bound	 1e9x	 A	 Cytochrome	p450	51-like	rv0764c	
1f4t	 A	 Cytochrome	P450	119	
1phd	 A	 Cytochrome	p450-cam	
1s1f	 A	 Putative	cytochrome	p450	
2d0t	 A	 Indoleamine	2,3-dioxygenase	

Unbound	 1phc	 A	 Cytochrome	p450-cam	
	

Palmitic	Acid	
(PLM)	

	

Bound	 1eh5	 A	 Palmitoyl	protein	thioesterase	1	
1gxa	 A	 β-lactoglobulin	
1hxs	 1	 Genome	polyprotein,	coat	protein	vp1	

1lv2	 A	 Hepatocyte	nuclear	factor	4-γ	
	

1sz7	 A	 Trafficking	protein	particle	complex	
subunit	3	

2dt8	 A	 Degv	family	protein	
2e9l	 A	 Cytosolic	β-glucosidase	

2go3	 A	 Udp-3-o-[3-hydroxymyristoyl]	n-
acetylglucosamine	deacetylase	

2uwh	 A	 Bifunctional	p-450\:	NADPH-p450	
reductase	

3bfh	 A	 Pheromone-binding	protein	asp1	

3cue	 E	 Transport	protein	particle	23	kda	
subunit	

3egl	 A	 DegV	family	protein	

3epy	 A	 Acyl-coA-binding	domain-containing	
protein	7	

Unbound	 1ifb	 A	 Intestinal	fatty	acid	binding	protein	
Retinol	
(RTL)	

	

Bound	 1fmj	 A	 Retinol	dehydratase	
1gx8	 A	 β-lactoglobulin	
1kt6	 A	 Plasma	retinol-binding	protein	
2rct	 A	 Retinol-binding	protein	ii,	cellular	

Unbound	 1brq	 A	 Retinol	binding	protein	
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2’-deoxyuridine-5-
monophosphate	

(UMP)	

	

Bound	 1f7n	 A	 Pol	polyprotein	

1seh	 A	 Deoxyuridine	5'-triphosphate	
nucleotidohydrolase	

2bsy	 A	 Deoxyuridine	5'-triphosphate	
nucleotidohydrolase	

2g8o	 A	 Thymidylate	synthase	
2jar	 A	 5'(3')-deoxyribonucleotidase	

2qch	 A	 Uridine	5'-monophosphate	synthase	
(UMP	synthase)	

3dl5	 A	 Dihydrofolate	reductase,	DHFR	
Unbound	 3tms	 A	 Thymidylate	synthase	
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